Kernel Parameter Selection for Support Vector Machine Classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model selection for support vector machine classification

We address the problem of model selection for Support Vector Machine (SVM) classification. For fixed functional form of the kernel, model selection amounts to tuning kernel parameters and the slack penalty coefficient C. We begin by reviewing a recently developed probabilistic framework for SVM classification. An extension to the case of SVMs with quadratic slack penalties is given and a simple...

متن کامل

Parameter Tuning via Kernel Matrix Approximation for Support Vector Machine

Parameter tuning is essential to generalization of support vector machine (SVM). Previous methods usually adopt a nested two-layer framework, where the inner layer solves a convex optimization problem, and the outer layer selects the hyper-parameters by minimizing either cross validation or other error bounds. In this paper, we propose a novel parameter tuning approach for SVM via kernel matrix...

متن کامل

An Analytical Approach to Fast Parameter Selection of Gaussian RBF Kernel for Support Vector Machine

The Gaussian radial basis function (RBF) is a widely used kernel function in support vector machine (SVM). The kernel parameter σ is crucial to maintain high performance of the Gaussian SVM. Most previous studies on this topic are based on optimization search algorithms that result in large computation load. In this paper, we propose an analytical algorithm to determine the optimal σ with the p...

متن کامل

Efficient Kernel Approximation for Large-Scale Support Vector Machine Classification

Training support vector machines (SVMs) with nonlinear kernel functions on large-scale data are usually very timeconsuming. In contrast, there exist faster solvers to train the linear SVM. We propose a technique which sufficiently approximates the infinite-dimensional implicit feature mapping of the Gaussian kernel function by a low-dimensional feature mapping. By explicitly mapping data to the...

متن کامل

Text Classification Using Support Vector Machine with Mixture of Kernel

Recent studies have revealed that emerging modern machine learning techniques are advantageous to statistical models for text classification, such as SVM. In this study, we discuss the applications of the support vector machine with mixture of kernel (SVM-MK) to design a text classification system. Differing from the standard SVM, the SVM-MK uses the 1-norm based object function and adopts the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algorithms & Computational Technology

سال: 2014

ISSN: 1748-3026,1748-3026

DOI: 10.1260/1748-3018.8.2.163